Identification and characterization of cerebral ganglion neurons that induce swimming and modulate swim-related pedal ganglion neurons in Aplysia brasiliana

Author:

Gamkrelidze G. N.1,Laurienti P. J.1,Blankenship J. E.1

Affiliation:

1. Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1069, USA.

Abstract

1. We have identified and characterized a family of several pairs of neurons in the cerebral ganglion of Aplysia brasiliana that are capable of inducing, maintaining, or modulating a motor program that underlies swim locomotion in this marine mollusk. We have operationally defined these cells as command neurons (CNs) for swimming. 2. The command cells occur in bilateral pairs in the cerebral ganglion and make direct and indirect outputs to neurons in the pedal ganglia, including motor neurons, a central pattern generator circuit, and modulatory neurons that enhance muscle contractions during swimming. Several of the CNs are sufficient individually to induce the swim motor program (SMP), all receive sensory feedback from the periphery, and several interconnect with other swim-related CNs. 3. Tonic discharges of approximately 10 Hz in CN types 1-3 (CN1-CN3) are capable of eliciting the oscillatory, phasic SMP as recorded in peripheral nerves that innervate the swim appendages, the parapodia. CN1, CN2, and CN3 make monosynaptic excitatory connections onto ipsilateral, contralateral, and bilateral pedal swim-modulatory neurons [parapodial opener-phase (POP) cells], respectively; and each command cell type activates the pedal central pattern generator (CPG), leading to sustained phasic output of motor neurons and POP cells. 4. Tonic firing of CN4 causes weak activation of the SMP contralaterally. These neurons occur as two pairs of neurons in each cerebral hemiganglion, with mutual electrical and chemical synaptic interconnections. CN4 cells also excite CN1 and CN2 cells. Thus CN4 is classified as a higher-order swim command cell type. 5. Command cells classified as types 5-8 (CN5-CN8), although not capable of inducing the SMP individually, nonetheless have strong synaptic connections with pedal POP cells and/or with other command neurons. These command cells may excite or inhibit follower cells on the same or opposite sides of the preparation and modulate the swim output. 6. All the command cells tested received strong input from mechanical stimulation, either stretch or pinching, of either parapodium. Mechanosensory input from the parapodia was shown to depend on the presence of the pedal ganglion, but not the pleural. Sensory stimulation activated command cells and motor neurons, but POP cells received input from sensory stimuli only through the cerebral ganglion, probably via command cells. The effects of applied mechanosensory stimuli could be entirely mimicked by motor neuron-induced contractions of the parapodia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3