Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat

Author:

McCue M. P.1,Guinan J. J.1

Affiliation:

1. Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.

Abstract

1. Recordings were made from single afferent fibers in the inferior vestibular nerve. Firing rates of a substantial portion of the afferents with irregular background activity increased in response to moderately intense tone bursts. 2. Spontaneous activity from acoustically responsive vestibular afferents was statistically analyzed and compared with data from a more widespread sampling of primary afferents in the cat's vestibulocochlear nerve. Acoustically responsive vestibular afferents had interspike interval histograms with modes > 10 ms, coefficients of variation > 0.15, and skews > 0.88. On the basis of spontaneous activity, these afferents were easily distinguishable from cochlear afferents and regular vestibular afferents, but no obvious features differentiated them from other irregular vestibular afferents. 3. The distributions of spike intervals in the spontaneous activity of acoustically responsive vestibular afferents were fitted by Erlang probability density functions describing the second-order interarrival times of a Poisson process initiated after a finite delay (refractory period). 4. Acoustically responsive vestibular afferents had broad, V-shaped tuning curves with best frequencies between 500 and 1,000 Hz, thresholds of > or = 90 dB SPL, and shapes comparable with the tuning-curve “tails” of cochlear afferents. In contrast to cochlear-nerve afferents, acoustically responsive vestibular afferents did not show a strong relationship between spontaneous rate and threshold. 5. We compare the acoustic frequency selectivity of vestibular and cochlear afferents in terms of their functional and evolutionary relationships. Our data and those of others indicate that acoustically responsive vestibular afferents are likely to provide an input to the acoustic activation of the sternocleidomastoid muscle in humans, and they may provide an input to other acoustic reflexes such as the middle-ear-muscle reflexes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3