Effect of galvanic vestibular stimulation on human postural responses during support surface translations

Author:

Inglis J. T.1,Shupert C. L.1,Hlavacka F.1,Horak F. B.1

Affiliation:

1. R. S. Dow Neurological Sciences Institute, Portland, Oregon 97209,USA.

Abstract

1. We investigated the role of the vestibular system in postural control by combining galvanic vestibular stimulation (0.2-0.5 mA) with platform translations in standing subjects. Vestibular stimulation delivered 500 ms before and continuously during the platform translation produced little change in the earliest center of pressure (COP) and center of mass (COM) movements in response to platform translations, but resulted in large changes during the execution of the postural movement and in the final equilibrium position. 2. Vestibular stimulation produced anterior or posterior shifts in the position of COP and COM, depending on the polarity of the galvanic current. These shifts were larger during platform translations than during quiet stance. The peak of these shifts in COP and COM occurred at 1.5-2.5 s after the onset of platform translation, and increased in magnitude with increasing platform velocity. The final equilibrium positions of COP and COM were also shifted, but these shifts were smaller and not dependent on platform velocity. 3. These results imply that a tonic step of galvanic current to the vestibular system can change the final equilibrium position for an automatic postural response. Furthermore, these results indicate that the vestibular system may play a larger role in interpreting sensory reafference during postural movements, and especially during fast postural movements, than in controlling quiet stance. Finally, these results indicate that the vestibular system does not play a critical role in triggering the earliest postural responses, but it may be critical in establishing an internal reference for verticality.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3