Passive compliance and active force generation in the guinea pig outer hair cell

Author:

Hallworth R.1

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, University ofTexas Health Science Center at San Antonio 78284, USA.

Abstract

1. Cochlear outer hair cells 20-80 microns in length were compressed axially in vitro using calibrated glass fibers mounted on a piezoelectric actuator. 2. When driven by rectangular pulses in the compression direction, the motion of the fiber tip consisted of a rapid initial compression that was complete in 10-20 ms followed by a smaller compression of slower time course. 3. The initial fiber deflections were found to be linear in amplitude for compressions up to 400 nm. The axial compliances of outer hair cells were calculated from the difference between the fiber tip motions when unattached and when in contact with a cell. Axial compliances were found to be in the range of 0.04-1.2 km/N for 149 cells. The axial compliance was an increasing function of cell length. 4. The peak forces generated by electrically stimulated outer hair cells were measured from the deflection of a glass fiber when the cells were stimulated by sinusoidal voltage commands. The slope gains of force generation (force generated per mV of command at the cell membrane) were estimated to range from 0.01 to 100 pN/mV. Most of the results fell in the range of 0.1-20 pN/mV. 5. When the apparent stiffness of the fiber was increased by moving the cell closer to the fiber base, the peak amplitude of the fiber deflection generated by the cell decreased and the peak force increased, for the same sinusoidal voltage command. 6. The results of the previous experiment were interpreted in the light of a model of outer hair cell motility in which an ideal extension generating element is in series with an internal stiffness element. This internal stiffness was then calculated for 13 cells. 7. The internal stiffnesses of cells calculated by the above procedure were found to be positively correlated with the axial stiffness measurements obtained for the same cells. 8. The implications of the above results for the effectiveness of outer hair cell motility in vivo are discussed.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3