Regulation of Cation Channel Voltage and Ca2+ Dependence by Multiple Modulators

Author:

Gardam Kate E.,Magoski Neil S.

Abstract

Ion channel regulation is key to controlling neuronal excitability. However, the extent that modulators and gating factors interact to regulate channels is less clear. For Aplysia, a nonselective cation channel plays an essential role in reproduction by driving an afterdischarge in the bag cell neurons to elicit egg-laying hormone secretion. We examined the regulation of cation channel voltage and Ca2+ dependence by protein kinase C (PKC) and inositol trisphosphate (IP3)—two prominent afterdischarge signals. In excised, inside-out patches, the channel remained open longer and reopened more often with depolarization from −90 to +30 mV. As previously reported, PKC could closely associate with the channel and increase activity at −60 mV. We now show that, following the effects of PKC, voltage dependence was shifted to the left (essentially enhanced), particularly at more negative voltages. Conversely, the voltage dependence of channels lacking PKC was shifted to the right (essentially suppressed). Predictably, activity was increased at all Ca2+ concentrations following the effects of PKC; nevertheless, Ca2+ dependence was actually shifted to the right. Moreover, whereas IP3 did not alter activity at −60 mV, it drastically shifted Ca2+ dependence to the right—an outcome largely reversed by PKC. With respect to the afterdischarge, these data suggest PKC initially upregulates the channel by direct gating and shifting voltage dependence to the left. Subsequently, PKC and IP3 attenuate the channel by suppressing Ca2+ dependence. This ensures hormone delivery by allowing afterdischarge initiation and maintenance but also prevents interminable bursting. Similar regulatory interactions may be used by other neurons to achieve diverse outputs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3