Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex

Author:

Sawaguchi T.1,Matsumura M.1,Kubota K.1

Affiliation:

1. Department of Neurophysiology, Kyoto University, Aichi, Japan.

Abstract

1. Using iontophoretic techniques, we investigated the influence of dopamine (DA) antagonists [haloperidol (HAL), a non-selective DA antagonist; sulpiride (SUL), a selective antagonist for D2 receptors; and fluphenazine (FLU), a potent antagonist for D1 receptors] on neuronal activity related to a delayed response (DR) task in the monkey prefrontal cortex (PFC). The DR task was initiated by the rotation of a handle to a central zone and consisted of seven distinct periods: an initial intertrial interval of 0.3 s, a precue period of 1 s (a center green lamp), a cue period of 1 s (left or right lamp), a delay period of 4 s, a go period (red lamp in the center; rotation of the handle to either the left or right zone), a hold period (holding of the handle in either the left or right zone), and a final reward period. Because it was shown, as described in the companion paper (Sawaguchi et al. 1990), that DA augments the increased activity of prefrontal neurons related to the cue, delay, and go periods of the DR task, effects of the DA antagonists were examined in a total of 61 neurons that showed increases in activity related to these periods and a response to DA. 2. Consistent with previous studies (Sawaguchi et al. 1988a, 1990), iontophoretically applied DA increased DR task-related activity in prefrontal neurons. Iontophoretically applied HAL and FLU antagonized the increased effect of DA on the task-related activity. By contrast, SUL did not have any clear effects on the influence of DA. 3. By themselves, HAL and FLU reduced prefrontal neuronal activity related to the cue, delay, and go periods of the DR task. The ratio of the reduction by HAL and FLU was significantly larger for activity during the cue, delay, or go period than for background activity during the precue period; and, as a result, the signal-to-noise (S/N) ratio of the task-related activity to background activity was reduced during the application of HAL and FLU. In contrast, SUL did not have any clear effects on activity related to the cue, delay, and go periods of the DR task, and the S/N ratio during the application of SUL did not significantly differ from that before the application of the drug.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3