Identification of histaminergic neurons in Aplysia

Author:

Elste A.1,Koester J.1,Shapiro E.1,Panula P.1,Schwartz J. H.1

Affiliation:

1. Howard Hughes Medical Institute, Columbia University College ofPhysicians and Surgeons, New York, New York 10032.

Abstract

1. We have identified putative histaminergic neurons in the central nervous system of Aplysia californica by light-microscopic autoradiography after uptake of [3H]histamine and by immunohistochemistry with the use of an antibody specific for histamine. 2. In the cerebral ganglion cells previously shown to contain histamine (C2 and 2 large neighboring cells in the E cluster and a group of smaller cells in the L cluster) were identified both by uptake of [3H]histamine and by histamine immunoreactivity. The identification of C2 was confirmed by experiments in which individual C2s were characterized electrophysiologically and injected with Lucifer yellow before processing for immunohistochemistry. The giant serotonergic neuron did not take up [3H]histamine and was not immunoreactive. 3. In the abdominal ganglion two clusters of cells--one in the left hemiganglion and the other in the right--took up [3H]histamine and were histamine immunoreactive. These clusters are located in the regions occupied by the 30 identified respiratory interneurons, R25 and L25. Individual cells in the R25 and L25 clusters were identified electrophysiologically, marked by injection of Lucifer yellow, and processed for immunocytochemistry. Eleven of the 30 L25 cells examined (from 7 ganglia) and 2 of the 25 R25 cells (from 6 ganglia) that had been marked with Lucifer yellow were also histamine immunoreactive. 4. Also in the abdominal ganglion, identified cells in the L32 cluster were not histamine immunoreactive and did not take up [3H]histamine. These interneurons, which mediate presynaptic inhibition, had previously been considered histaminergic. Neurons in the ganglion known to use transmitters other than histamine (L10, R2, RB cells, and bag cells) were not histamine immunoreactive.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3