Studies of the brain structures involved in diffuse noxious inhibitory controls: the mesencephalon

Author:

Bouhassira D.1,Bing Z.1,Le Bars D.1

Affiliation:

1. Institut National de la Sante et de la Recherche Medicale, Paris, France.

Abstract

1. Diffuse noxious inhibitory controls (DNIC) were compared in control sham-operated rats and in rats with lesions of mesencephalic structures involved in the modulation of pain, namely the periaqueductal gray (PAG), cuneiformis nucleus (CNF), and parabrachial nucleus (PB). 2. Lesions were induced by ibotenic acid: 4 micrograms (0.2 microliter) injected bilaterally in the PAG or the CNF-PB area or 10 micrograms (0.5 microliter) injected unilaterally in the CNF or PB. Control animals were microinjected with the vehicle (artificial CSF) alone. Histological controls were performed at the end of each electrophysiological experiment. Only the animals in which the target structure (PAG, CNF, or PB) was completely destroyed in its entire rostrocaudal length were selected. With the exception of the cell bodies of the trigeminal mesencephalic nucleus, all neurons were destroyed in these regions. 3. At least 1 wk after the microinjection procedure, recordings were made from convergent neurons in both the right and left trigeminal nucleus caudalis. These neurons were activated by both noxious and nonnoxious stimuli applied to their excitatory receptive fields and gave responses due to activation of both A- and C-fibers after percutaneous electrical stimulation of their receptive fields. These types of response were inhibited by applying noxious conditioning stimuli to heterotopic areas of the body, namely immersing a paw in a 50 degrees C water bath. A virtually total block of the responses was observed during the application of the noxious conditioning stimulus, and this was followed by long-lasting poststimulus effects. 4. The general properties of neurons (sizes of receptive fields, spontaneous activity, thresholds to obtain C-fiber-evoked responses, responses to C-fiber activation) were all found to be similar in the control and the lesioned animals. The percentage inhibition of the C-fiber-evoked responses of the trigeminal convergent neurons elicited by the noxious conditioning stimuli were found to not be significantly different in any group of animals; in all the animals, inhibitions exceeded 85% during the immersion of either paw and were followed by long-lasting poststimulus effects. 5. We conclude that the PAG, CNF, and PB, three structures that are putatively involved in the modulation of pain, do not participate directly in the supraspinal part of the loop subserving DNIC. The involvement of other structure(s) and a possible indirect modulation of DNIC are discussed. It is also concluded that the PAG, CNF, and PB do not participate directly in the tonic descending inhibitory controls, which are presumed to modulate the activity of convergent neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3