Affiliation:
1. Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
Abstract
1. Extracellular and intracellular recordings and measurements of the extracellular concentration of free K+ ([K+]o) were performed in the CA1 subfield of the rat hippocampal slice during perfusion with artificial cerebrospinal fluid (ACSF) in which NaCl had been replaced with equimolar Na-isethionate or Na-methylsulfate (hereafter called low Cl- ACSF). 2. CAl pyramidal cells perfused with low Cl- ACSF generated intracellular epileptiform potentials in response to orthodromic, single-shock stimuli delivered in stratum (S.) radiatum. Low-intensity stimuli evoked a short-lasting epileptiform burst (SB) of action potentials that lasted 40–150 ms and was followed by a prolonged hyperpolarization. When the stimulus strength was increased, a long-lasting epileptiform burst (LB) appeared; it had a duration of 4–15 s and consisted of an early discharge of action potentials similar to the SB, followed by a prolonged, large-amplitude depolarizing plateau. The refractory period of the LB was longer than 20 s. SB and LB were also seen after stimulation of the alveus. 3. Variations of the membrane potential with injection of steady. DC current modified the shape of SB and LB. When microelectrodes filled with the lidocaine derivative QX-314 were used, the amplitudes of both SB and LB increased in a linear fashion during changes of the baseline membrane potential in the hyperpolarizing direction. The membrane input resistance, as measured by injecting brief square pulses of hyperpolarizing current, decreased by 65-80% during the long-lasting depolarizing plateau of LB. 4. A synchronous field potential and a transient increase in [K+]o accompanied the epileptiform responses. The extracellular counterpart of the SB was a burst of three to six population spikes and a small increase in [K+]o (less than or equal to 2 mM from a resting value of approximately 2.5 mM). The LB was associated with a large-amplitude, biphasic, negative field potential and a large increase in [K+]o (up to 12.4 mM above the resting value). Changes in [K+]o during the LB were largest at the border between S. oriens and S. pyramidale. This was also the site where the field potentials measured 2–5 s after the stimulus attained their maximal amplitude. Conversely, field potentials associated with the early component of the LB or with the SB displayed a maximal amplitude in the S. radiatum. 5. Spontaneous SBs and LBs were at times recorded in the CA1 and in the CA3 subfield.(ABSTRACT TRUNCATED AT 400 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献