Excitatory amino acid-mediated transmission of inspiratory drive to phrenic motoneurons

Author:

Liu G.1,Feldman J. L.1,Smith J. C.1

Affiliation:

1. Department of Kinesiology, University of California, Los Angeles90024-1568.

Abstract

1. The role of excitatory amino acids (EAAs) in the bulbospinal transmission of inspiratory drive was studied by intracellular and single-electrode voltage-clamp recordings from phrenic motoneurons in the in vitro neonatal rat brain stem spinal cord. 2. In all brain stem-spinal cord preparations there were spontaneously generated rhythmic membrane depolarizations and associated spiking of phrenic motoneurons during the inspiratory phase of the respiratory cycle. The envelope of the motoneuron drive potential had a rapid onset to peak (50 ms) followed by a plateau/declining phase that lasted 400-700 ms. The peak potential was approximately 10-20 mV above base-line potential. The drive current under voltage clamp had a similar shape and duration to the drive potential with a peak current greater than 1.5 nA. 3. The involvement of EAAs in the bulbospinal transmission of inspiratory drive was demonstrated by checking the effects of various EAA receptor antagonists on the phrenic motoneuron inspiratory drive. When kynurenic acid (KYN), an antagonist acting on all three subtypes of EAA receptors, was applied to the solution bathing the spinal cord, the motoneuron action potentials were abolished, and the amplitude of inspiratory drive potential was significantly reduced. To further classify the role of the different EAA receptor subtypes in the synaptic transmission of inspiratory drive, the effects on the drive potential of either 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a specific non-N-methyl-D-aspartic acid (non-NMDA) receptor antagonist, or DL-2-amino-5-phosphonovaleric acid (AP5), DL-2-amino-7-phosphonoheptanoic acid (AP7), and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imin emaleate (MK-801), NMDA receptor antagonists, were investigated. Bath or local application of CNQX induced a dose-dependent decrease of the inspiratory drive potential without changing intrinsic motoneuron membrane properties. On the other hand, application of AP7 or MK 801 had a small effect on the inspiratory drive potential or the inspiratory drive current when the motoneuron membrane potential was clamped near end-expiratory potentials (-60 to -75 mV). 4. To establish the presence of EAA receptors on the phrenic motoneuronal membrane and to provide information on the available receptor subtypes for action of the endogenously released transmitter, we tested the effects of agonists for the major EAA receptor subtypes after blocking synaptic transmission (produced by axonal action potentials) by bath application of tetrodotoxin (TTX).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3