Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta)

Author:

Schwarz D. W.1,Tomlinson R. W.1

Affiliation:

1. Rotary Hearing Centre, University of British Columbia, Vancouver, Canada.

Abstract

1. The auditory cortex in the superior temporal region of the alert rhesus monkey was explored for neuronal responses to pure and harmonic complex tones and noise. The monkeys had been previously trained to recognize the similarity between harmonic complex tones with and without fundamentals. Because this suggested that they could preceive the pitch of the lacking fundamental similarly to humans, we searched for neuronal responses relevant to this perception. 2. Combination-sensitive neurons that might explain pitch perception were not found in the surveyed cortical regions. Such neurons would exhibit similar responses to stimuli with similar periodicities but differing spectral compositions. The fact that no neuron with responses to a fundamental frequency responded also to a corresponding harmonic complex missing the fundamental indicates that cochlear distortion products at the fundamental may not have been responsible for missing fundamental-pitch perception in these monkeys. 3. Neuronal responses can be expressed as relatively simple filter functions. Neurons with excitatory response areas (tuning curves) displayed various inhibitory sidebands at lower and/or higher frequencies. Thus responses varied along a continuum of combined excitatory and inhibitory filter functions. 4. Five elementary response classes along this continuum are presented to illustrate the range of response patterns. 5. “Filter (F) neurons” had little or no inhibitory sidebands and responded well when any component of a complex tone entered its pure-tone receptive field. Bandwidths increased with intensity. Filter functions of these neurons were thus similar to cochlear nerve-fiber tuning curves. 6. ”High-resolution filter (HRF) neurons” displayed narrow tuning curves with narrowband widths that displayed little growth with intensity. Such cells were able to resolve up to the lowest seven components of harmonic complex tones as distinct responses. They also responded well to wideband stimuli. 7. “Fundamental (F0) neurons” displayed similar tuning bandwidths for pure tones and corresponding fundamentals of harmonic complexes. This response pattern was due to lower harmonic complexes. This response pattern was due to lower inhibitory sidebands. Thus these cells cannot respond to missing fundamentals of harmonic complexes. Only physically present components in the pure-tone receptive field would excite such neurons. 8. Cells with no or very weak responses to pure tones or other narrowband stimuli responded well to harmonic complexes or wideband noise.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3