Proton-induced sodium current in frog isolated dorsal root ganglion cells

Author:

Akaike N.1,Krishtal O. A.1,Maruyama T.1

Affiliation:

1. Department of Neurophysiology, Tohoku University School of Medicine,Sendai, Japan.

Abstract

1. The proton-induced current was examined in isolated frog dorsal root ganglion (DRG) cells by the use of the "concentration-clamp" technique, which allows intracellular perfusion and rapid change of external solution with various pH (pHo) within 2 ms under single-electrode voltage-clamp condition. 2. Over one-half of the examined neurons showed no response for a "step" reduction of pHo even in a Ca2(+)-free external solution. In smaller neurons having a diameter less than 20 microns, the persistent and reliable proton-induced responses were obtained, though the current amplitude and the activation and inactivation varied considerably for each cell. 3. The decrease of external Na+ concentration ([Na+]o) reduced the proton response. The proton response reversed the direction and the Na+ equilibrium potential (ENa). 4. With decreasing pHo from 7.4, proton response increased in a sigmoidal fashion. The threshold was around pH 7.0 and the maximum response appeared at pH 5.2, whereas pKa and Hill coefficient were 6.0 and 1.97, respectively. 5. The activation and inactivation phases of the proton-induced current behaved as a single exponential function. The time constants of activation (tau a) and inactivation (tau i) were not affected by changing either the holding membrane potential (VH) or the low external Ca2+ concentration [( Ca2+]o) between 10(-6) and 5 X 10(-3) M. But the decrease of pHo up to 5.2 decreased both tau a and tau i in a saturable manner. 6. In the inactivation curve of proton-induced current obtained by decreasing pHo from various conditioning pHo to 5.5, half inactivation occurred at pHo 7.45.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3