An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig

Author:

Katakura N.1,Chandler S. H.1

Affiliation:

1. Department of Kinesiology, Brain Research Institute, University ofCalifornia, Los Angeles 90024.

Abstract

1. The effects of iontophoretic application of the excitatory amino acid antagonists kynurenic acid (KYN) and DL-2-amino-5-phosphonovaleric acid (APV), as well as the monoamines serotonin (5-HT) and norepinephrine (NE), on extracellularly recorded jaw opener motoneuron [digastric motoneuron (DIG)] discharge during cortically induced rhythmical masticatory-like activity (RMA) were examined in the anesthetized guinea pig. 2. Iontophoretic application of KYN, a broad-spectrum amino acid antagonist, suppressed the motoneuronal discharge evoked by short pulse train stimulation of the cortex for most cells tested. In contrast, iontophoretic application of APV, a specific N-methyl-D-aspartate (NMDA) antagonist, was usually without effect on the motoneuronal discharge evoked by short pulse train stimulation. 3. During RMA evoked by repetitive cortical stimulation, both KYN and APV suppressed rhythmical DIG motoneuronal discharge in many cells tested. 4. These data suggest that excitatory amino acid receptors on jaw opener motoneurons are involved in activation of RMA. It is proposed that the short-latency rapid excitation of jaw opener motoneurons, which occurs during both short pulse train cortical stimulation and RMA induced by repetitive cortical stimulation, is mediated, at least in part, by non-NMDA receptors. It is further suggested that the large-amplitude, long-duration slow rhythmical oscillations, which occur in the membrane potential of jaw opener motoneurons during RMA induced by repetitive cortical stimulation, are mediated, at least in part, by NMDA receptors. 5. Iontophoretic application of NE or 5-HT with low currents (less than 20 nA) produced a facilitation of digastric motoneuronal discharge during cycle-triggered glutamate application, short pulse train cortical stimulation, and RMA evoked by repetitive cortical stimulation. These facilitatory effects on motoneuronal discharge started within 1 min of drug application, reached a peak at approximately 3 min that persisted for several minutes after the application period, and recovered to control levels within 10-15 min. Direct application of NE or 5-HT, in the absence of chemical or synaptic activation, failed to activate these motoneurons. However, iontophoretic application of either monoamine could facilitate and bring to threshold rhythmical motoneuronal discharges during subthreshold repetitive cortical stimulation. 6. Iontophoretic application of methysergide, a 5-HT antagonist, and phentolamine, an alpha adrenoreceptor blocker, both produced a selective and reversible blockade of the facilitatory effects of 5-HT and NE, respectively, on motoneuronal discharge during cortically induced RMA. In contrast, iontophoretic application of sotalol, a beta adrenoreceptor blocker, had no effect on the NE-induced facilitation of RMA.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3