Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern

Author:

Cooke J. D.1,Brown S. H.1

Affiliation:

1. Department of Physiology, University of Western Ontario, London,Canada.

Abstract

1. Electromyographic (EMG) activity of arm movements made at constant velocity was studied in humans. In these movements, acceleration was temporally separated from deceleration by a period of constant velocity (zero acceleration) lasting up to 600 ms. 2. Agonist (AG1) and antagonist (ANT1) bursts were associated with acceleration. AG1 began before acceleration onset. ANT1 started after the onset of AG1 and was often partially coextensive with AG1. The initial phasic activity was followed by tonic EMG activity during the constant-velocity phase of the movements. Movement deceleration was associated with an antagonist burst (ANT2) and an agonist (AG2) burst. 3. Subjects could alter the magnitudes of the acceleration- and deceleration-related activities independently, with resulting independent changes in the movement acceleration and deceleration. 4. When the duration of the constant-velocity phase was decreased, the agonist/antagonist burst pairs occurred progressively closer in time. When movement duration was decreased to the point at which the velocity profile resembled that of step-tracking movements, the four periods of phasic EMG activity formed the classic triphasic pattern. 5. Triphasic EMG patterns were occasionally seen at the beginning or end of long-duration, constant-velocity movements. When they occurred, these triphasic patterns were associated with an acceleration/deceleration pattern similar to that seen in step-tracking movements. 6. The data indicate that paired agonist/antagonist activation is the basic unit of movement control. The AG1/ANT1 burst pair determines the increase and decrease of acceleration, respectively, and the ANT2/AG2 burst pair the increase and decrease of deceleration. These muscle activation pairs can be combined as needed to produce movements having different temporal characteristics.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3