Effect of Salicylate on KCNQ4 of the Guinea Pig Outer Hair Cell

Author:

Wu T.1,Lv P.2,Kim H. J.2,Yamoah E. N.2,Nuttall A. L.134

Affiliation:

1. Oregon Hearing Research Center, NRC04, Department of Otolaryngology/Head and Neck Surgery, Oregon Health Sciences University, Portland, Oregon;

2. Program in Communication and Sensory Science, Department of Anesthesiology and Pain Medicine, Center for Neuroscience, University of California, Davis, California;

3. Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan; and

4. Department of Otolaryngology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China

Abstract

Salicylate causes a moderate hearing loss and tinnitus in humans at high-dose levels. Salicylate-induced hearing loss has been attributed to impaired sound amplification by outer hair cells (OHCs) through its direct action on the OHC motility sensor and/or motor. However, there is a disparity of salicylate concentrations between the clinical and animal studies, i.e., extremely high extracellular concentrations of salicylate (from 1 to 10 mM) is required to produce a significant reduction of electromotility in animal studies. Such concentrations are above the clinical/physiological range for humans. Here, we showed that clinical/physiological concentration range of salicylate caused concentration-dependent and reversible reductions in IK,n (KCNQ4) and subsequent depolarization of OHCs. Salicylate reduced the maximal tail current of the activation curve of IK,n without altering the voltage-sensitivity ( Vhalf). The salicylate-induced reduction of IK,n was almost completely blocked by linopirdine (0.1 mM) and BaCl2 (10 mM). Consistent with the finding in OHCs, salicylate significantly reduced KCNQ4-mediated current expressed in Chinese hamster ovarian (CHO) cells by comparable amplitude to OHCs without significantly shifting Vhalf. Nonstationary fluctuation analysis shows that salicylate significantly reduced the estimated single-channel current amplitude and numbers. Intracellular Ca2+ elevation resulting from cytoplasmic acidosis also contributes to the current reduction of IK,n (KCNQ4) of OHCs. These results indicate a different model for the salicylate-induced hearing loss through the reduction of KCNQ4 and subsequent depolarization of OHCs, which reduces the driving force for transduction current and electromotility. The major mechanism underlying the reduction of IK,n (KCNQ4) is the direct blocking action of salicylate on KCNQ4.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3