Affiliation:
1. Department of Neurobiology and Behavior, University of California, Irvine, California 92697
Abstract
To facilitate an understanding of auditory thalamocortical mechanisms, we have developed a mouse brain-slice preparation with a functional connection between the ventral division of the medial geniculate (MGv) and the primary auditory cortex (ACx). Here we present the basic characteristics of the slice in terms of physiology (intracellular and extracellular recordings, including current source density analysis), pharmacology (including glutamate receptor involvement), and anatomy (gross anatomy, Nissl, parvalbumin immunocytochemistry, and tract tracing with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate). Thalamocortical transmission in this preparation (the “primary” slice) involves both α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid/kainate and N-methyl-d-aspartate-type glutamate receptors that appear to mediate monosynaptic inputs to layers 3-4 of ACx. MGv stimulation also initiates disynaptic inhibitory postsynaptic potentials and longer-duration intracortical, polysynaptic activity. Important differences between responses elicited by MGv versus conventional columnar (“on-beam”) stimulation emphasize the necessity of thalamic activation to infer thalamocortical mechanisms. We also introduce a second slice preparation, the “shell” slice, obtained from the brain region immediately ventral to the primary slice, that may contain a nonprimary thalamocortical pathway to temporal cortex. In the shell slice, stimulation of the thalamus or the region immediately ventral to it appears to produce fast activation of synapses in cortical layer 1 followed by robust intracortical polysynaptic activity. The layer 1 responses may result from orthodromic activation of nonprimary thalamocortical pathways; however, a plausible alternative could involve antidromic activation of corticotectal neurons and their layer 1 collaterals. The primary and shell slices will provide useful tools to investigate mechanisms of information processing in the ACx.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
220 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献