Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex

Author:

Bracci Stefania12,Cavina-Pratesi Cristiana3,Ietswaart Magdalena2,Caramazza Alfonso14,Peelen Marius V.14

Affiliation:

1. Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy;

2. Department of Psychology, Northumbria University, Newcastle upon Tyne and

3. Department of Psychology, Durham University, Durham, United Kingdom; and

4. Department of Psychology, Harvard University, Cambridge, Massachusetts

Abstract

The perception of object-directed actions performed by either hands or tools recruits regions in left fronto-parietal cortex. Here, using functional MRI (fMRI), we tested whether the common role of hands and tools in object manipulation is also reflected in the distribution of response patterns to these categories in visual cortex. In two experiments we found that static pictures of hands and tools activated closely overlapping regions in left lateral occipitotemporal cortex (LOTC). Left LOTC responses to tools selectively overlapped with responses to hands but not with responses to whole bodies, nonhand body parts, other objects, or visual motion. Multivoxel pattern analysis in left LOTC indicated a high degree of similarity between response patterns to hands and tools but not between hands or tools and other body parts. Finally, functional connectivity analysis showed that the left LOTC hand/tool region was selectively connected, relative to neighboring body-, motion-, and object-responsive regions, with regions in left intraparietal sulcus and left premotor cortex that have previously been implicated in hand/tool action-related processing. Taken together, these results suggest that action-related object properties shared by hands and tools are reflected in the organization of high-order visual cortex. We propose that the functional organization of high-order visual cortex partly reflects the organization of downstream functional networks, such as the fronto-parietal action network, due to differences within visual cortex in the connectivity to these networks.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3