Effects of Expectations for Different Reward Magnitudes on Neuronal Activity in Primate Striatum

Author:

Cromwell Howard C.1,Schultz Wolfram1

Affiliation:

1. Institute of Physiology, University of Fribourg, CH-1700 Fribourg, Switzerland

Abstract

In behavioral science, it is well known that humans and nonhuman animals are highly sensitive to differences in reward magnitude when choosing an outcome from a set of alternatives. We know that a realm of behavioral reactions is altered when animals begin to expect different levels of reward outcome. Our present aim was to investigate how the expectation for different magnitudes of reward influences behavior-related neurophysiology in the anterior striatum. In a spatial delayed response task, different instruction pictures are presented to the monkey. Each image represents a different magnitude of juice. By reaching to the spatial location where an instruction picture was presented, animals could receive the particular liquid amount designated by the stimulus. Reliable preferences in reward choice trials and differences in anticipatory licks, performance errors, and reaction times indicated that animals differentially expected the various reward amounts predicted by the instruction cues. A total of 374 of 2,000 neurons in the anterior parts of the caudate nucleus, putamen, and ventral striatum showed five forms of task-related activation during the preparation or execution of movement and activations preceding or following the liquid drop delivery. Approximately one-half of these striatal neurons showed differing response levels dependent on the magnitude of liquid to be received. Results of a linear regression analysis showed that reward magnitude and single cell discharge rate were related in a subset of neurons by a monotonic positive or negative relationship. Overall, these data support the idea that the striatum utilizes expectancies that contain precise information concerning the predicted, forthcoming level of reward in directing general behavioral reactions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3