Dissociated Hysteresis of Static Ocular Counterroll in Humans

Author:

Palla A.,Bockisch C. J.,Bergamin O.,Straumann D.

Abstract

In stationary head roll positions, the eyes are cyclodivergent. We asked whether this phenomenon can be explained by a static hysteresis that differs between the eyes contra- (CE) and ipsilateral (IE) to head roll. Using a motorized turntable, healthy human subjects ( n = 8) were continuously rotated about the earth-horizontal naso-occipital axis. Starting from the upright position, a total of three full rotations at a constant velocity (2°/s) were completed (acceleration = 0.05°/s2, velocity plateau reached after 40 s). Subjects directed their gaze on a flashing laser dot straight ahead (switched on 20 ms every 2 s). Binocular three-dimensional eye movements were recorded with dual search coils that were modified (wires exiting inferiorly) to minimize torsional artifacts by the eyelids. A sinusoidal function with a first and second harmonic was fitted to torsional eye position as a function of torsional whole body position at constant turntable velocity. The amplitude and phase of the first harmonic differed significantly between the two eyes (paired t-test: P < 0.05): on average, counterroll amplitude of IE was larger [CE: 6.6 ± 1.6° (SD); IE: 8.1 ± 1.7°), whereas CE showed more position lag relative to the turntable (CE: 12.5 ± 10.7°; IE: 5.1 ± 8.7°). We conclude that cyclodivergence observed during static ocular counterroll is mainly a result of hysteresis that depends on whether eyes are contra- or ipsilateral to head roll. Static hysteresis also explains the phenomenon of residual torsion, i.e., an incomplete torsional return of the eyes when the first 360° whole body rotation was completed and subjects were back in upright position (extorsion of CE: 2.0 ± 0.10°; intorsion of IE: 1.4 ± 0.10°). A computer model that includes asymmetric backlash for each eye can explain dissociated torsional hysteresis during quasi-static binocular counterroll. We hypothesize that ocular torsional hysteresis is introduced at the level of the otolith pathways because the direction-dependent torsional position lag of the eyes is related to the head roll position and not the eye position.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3