Individual and synergistic effects of sniffing frequency and flow rate on olfactory bulb activity

Author:

Courtiol Emmanuelle1,Hegoburu Chloé1,Litaudon Philippe1,Garcia Samuel1,Fourcaud-Trocmé Nicolas1,Buonviso Nathalie1

Affiliation:

1. Centre de Recherche en Neurosciences de Lyon (CRNL) Equipe Olfaction: du codage à la mémoire, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Lyon Cedex, France

Abstract

Is faster or stronger sniffing important for the olfactory system? Odorant molecules are captured by sniffing. The features of sniffing constrain both the temporality and intensity of the input to the olfactory structures. In this context, it is clear that variations in both the sniff frequency and flow rate have a major impact on the activation of olfactory structures. However, the question of how frequency and flow rate individually or synergistically impact bulbar output has not been answered. We have addressed this question using multiple experimental approaches. In double-tracheotomized, anesthetized rats, we recorded both the bulbar local field potential (LFP) and mitral/tufted cells' activities when the sampling flow rate and frequency were controlled independently. We found that a tradeoff between the sampling frequency and the flow rate could maintain olfactory bulb sampling-related rhythmicity and that only an increase in flow rate could induce a faster, odor-evoked response. LFP and sniffing were recorded in awake rats. We found that sampling-related rhythmicity was maintained during high-frequency sniffing. Furthermore, we observed that the covariation between the frequency and flow rate, which was necessary for the tradeoff seen in the anesthetized preparations, also occurred in awake animals. Our study shows that the sampling frequency and flow rate can act either independently or synergistically on bulbar output to shape the neuronal message. The system likely takes advantage of this flexibility to adapt sniffing strategies to animal behavior. Our study provides additional support for the idea that sniffing and olfaction function in an integrated manner.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3