Keeping still doesn't “make sense”: examining a role for movement variability by stabilizing the arm during a postural control task

Author:

Murnaghan Chantelle D.1,Carpenter Mark G.1,Chua Romeo1,Inglis J. Timothy1

Affiliation:

1. School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or “lock” movements of the arm without the participants' awareness. When participants were “locked,” the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment. NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3