Author:
Garcia Liliana,D'Alessandro Giampaolo,Fernagut Pierre-Olivier,Bioulac Bernard,Hammond Constance
Abstract
In clinical conditions, high-frequency stimulation (HFS) of subthalamic (STN) neurons in Parkinson's disease is empirically applied at ≥100 Hz (130–185 Hz), with pulses of short duration (60–100 μs) and 1- to 3-mA amplitude. Other parameter values produce no effect or aggravate the symptoms. To gain a better understanding of the mechanisms that underlie the therapeutic action of HFS, we have compared the effects of different combinations of parameter values delivered by clinical stimulators on the activity of STN neurons recorded in whole cell patch-clamp configuration in slices. We showed that none of tested combinations of parameters silenced the neurons. Non-therapeutic combinations i.e., low-frequency pulses (10–50 Hz), even at large amplitude or width, further excited the STN neurons with respect to their spontaneous activity. In contrast, combinations in the therapeutic range (80–185 Hz, 90–200 μs, 500–800 μA) replaced the preexisting activity by spikes, time-locked to the stimuli and thus presenting a striking regularity. When increasing pulse width or amplitude in this high-frequency range, the dual effect was still present but the activity generated became more irregular. We propose that during HFS at clinically relevant parameters, STN neurons behave as stable oscillators entirely driven by the stimulation, giving an average stable STN output that overrides spontaneous activity and introduces high-frequency regular spiking in the basal ganglia network.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献