Reduced postactivation depression of soleus H reflex and root evoked potential after transcranial magnetic stimulation

Author:

Andrews Jennifer C.12,Stein Richard B.12,Roy François D.32

Affiliation:

1. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada;

2. Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada

3. Department of Surgery, University of Alberta, Edmonton, Alberta, Canada; and

Abstract

Postactivation depression of the Hoffmann (H) reflex is associated with a transient period of suppression following activation of the reflex pathway. In soleus, the depression lasts for 100–200 ms during voluntary contraction and up to 10 s at rest. A reflex root evoked potential (REP), elicited after a single pulse of transcutaneous stimulation to the thoracolumbar spine, has been shown to exhibit similar suppression. The present study systematically characterized the effect of transcranial magnetic stimulation (TMS) on postactivation depression using double-pulse H reflexes and REPs. A TMS pulse reduced the period of depression to 10–15 ms for both reflexes. TMS could even produce postactivation facilitation of the H reflex, as the second reflex response was increased to 243 ± 51% of control values at the 75-ms interval. The time course was qualitatively similar for the REP, yet the overall increase was less. While recovery of the H reflex was slower in the relaxed muscle, the profile exhibited a distinct bimodal shape characterized by an early peak at the 25-ms interval, reaching 72 ± 23% of control values, followed by a trough at 50 ms, and then a gradual recovery at intervals > 50 ms. The rapid recovery of two successively depressed H reflexes, ∼25 ms apart, was also possible with double-pulse TMS. The effect of the TMS-induced corticospinal excitation on postactivation depression may be explained by a combination of pre- and postsynaptic mechanisms, although further investigation is required to distinguish between them.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3