Excitation of primate spinothalamic neurons by cutaneous C-fiber volleys

Author:

Chung J. M.,Kenshalo D. R.,Gerhart K. D.,Willis W. D.

Abstract

1. The responses of spinothalamic tract cells in the lumbosacral spinal cords of anesthetized monkeys were examined following electrical stimulation of the sural nerve or the application of noxious thermal and mechanical stimuli to the skin on the lateral aspect of the foot. 2. The spinothalamic tract neurons were classified as wide dynamic range (WDR), high-threshold (HT), or low-threshold (LT) cells on the basis of their responses to mechanical stimuli. 3. All of the WDR and HT spinothalamic tract cells tested responded to volleys in A- and C-fibers. However, strong C-fiber responses were more common in HT than in WDR cells. 4. The responses atributed to C-fibers were graded with the size of the C-fiber volley. The latencies of the responses attributed to C-fibers indicated that the fastest afferents involved had a mean conduction velocity of 0.9 m/s. The responses remained after anodal blockade of conduction in A-fibers. 5. Temporal summation of the responses of spinothalamic tract cells was demonstrated both to brief trains of stimuli at 33 Hz and to single stimuli repeated at 1- to 2-s intervals. The latter phenomenon is often called "windup." 6. The responses of several spinothalamic tract cells to noxious heat pulses could still be elicited during anodal blockade of conduction in A-fibers. Similarly, it was possible to demonstrate an excitatory action of noxious mechanical stimuli despite interference with conduction in A-fibers by anodal current. 7. The cells investigated were located either in the marginal zone or in the layers of the dorsal horn equivalent to Rexed's laminae IV-VI in the cat. The cells were generally activated antidromically from the caudal part of the ventral posterior lateral nucleus of the thalamus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3