Cutaneous masking. II. Geometry of excitatory andinhibitory receptive fields of single units in somatosensory cortex of the cat

Author:

Laskin S. E.,Spencer W. A.

Abstract

1. The responses of single neurons in the primary somatosensory cortex of the cat to brief air-pulse stimuli were quantitatively examined. These controlled natural stimuli activated almost exclusively rapidly adapting hair units which, on systematic movement of the stimulus through the receptive field, gave unit-response profiles that showed the classical unimodal tent-shaped distribution. 2. Conditioning stimulus-induced inhibition of a response evoked by a fixed test stimulus was measured by systematically moving the conditioning stimulus through the receptive field. The spatial distribution of in-field inhibitory activity was unimodal and highly covariant with that of the conditioning excitation, the peak inhibition corresponding to the functional center of the excitatory receptive field. 3. Nearly one-half of the units studied evidenced inhibition extending beyond the excitatory receptive field, forming a "surround" inhibitory region; but these were usually restricted areas with rather weak inhibitory effects. 4. Time-course measuring revealed, on the average, inhibition effects measureable from 10 ms before to some 70 ms following conditioning stimulation, with peak inhibition delayed some 10--15 ms from the conditioning stimulus onset. We showed the backward inhibition, occurring with the test stimulus delivered before the onset of the conditioning stimulus, to be a property of the test response duration. Inhibition measured in the surround areas had essentially the same time course as the inhibition calculated from measurements made within the receptive fields. 5. The spatial and temporal profiles of the excitatory and inhibitory cortical unitary activity are thus very similar to the parametric features of psychophysical enhancement and masking. These findings suggest that the excitatory and inhibitory activities related to individual stimuli interact in multipoint stimulus paradigms so that simple unimodal composite profiles are synthesized.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3