Central and peripheral control of siphon-withdrawal reflex in Aplysia californica

Author:

Perlman A. J.

Abstract

1. The defensive withdrawal reflex of the siphon of Aplysia is a local response (exhibited by the organ that is stimulated) mediated by the conjoint action of both the central and peripheral nervous systems. 2. Three independent methods were used to determine the contribution of the central and peripheral nervous systems to the siphon-withdrawal reflex: 1) acute reversible deganglionation, 2) chronic deganglionation, and 3) a selective reversible hyperpolarization. With each of these techniques, the central nervous system was found to contribute about 55% of the total reflex. 3. Seven motor neurons were identified and characterized with respect to their electrophysiological properties and the motor actions. Three of the central motor cells belong to the LD clusters of cells (LDS1, LDS2, LDS3) and one is an RD cell (RDS). These four cells all receive excitatory synaptic input from siphon stimulation, excitatory synaptic input from the activity of the respiratory command cells network (interneuron II). large spontaneous IPSPs, and exhibit hyperpolarizing responses (H response) to iontophoretically applied acetylcholine (ACh). These cells all participate in the siphon-withdrawal component of a centrally commanded fixed-action pattern: spontaneous pumping movements of the mantle organs driven by the respiratory command cells. They receive an EPSP burst during the activity of the respiratory command cells and are competent to mediate the siphon motion. Three central siphon motor cells belong to the LB cluster (LBS1, LBS2, LBS3). These cells also receive excitatory input following stimulation of the siphon, a spontaneously occurring IPSP, and have H response to iontophoretically applied ACh. These cells, however, receive an IPSP burst during spontaneous pumping movement and thus do not participate in the active contraction phase of this behavior. LBS1 and LDS1 were examined with respect to their transmitter biochemistry and were found to be noncholinergic. 4. The siphon-withdrawal reflex habituates with comparable kinetics to repeated tactile stimulation when it is under central and peripheral control and when it is under peripheral control only. Thus, not only do both systems act conjointly to produce the defensive withdrawal reflex, but also they have similar response properties and are well matched to mediate the two parts of this siphon behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3