Degree of interocular synchrony required for maintenance of binocularity in kitten's visual cortex

Author:

Blasdel G. G.,Pettigrew J. D.

Abstract

1. The importance of synchronous activation in maintaining cortical binocularity was studied physiologically in kittens that had been reared under different regimens of alternating monocular deprivation. 2. Three different techniques were employed to provide alternate monocular stimulation: a) mechanical shutters placed before the animals' eyes; b) goggles fitted with complementary colored cutoff filters, which restricted visual input to one eye at a time; and c) two rotating gratings that were 90 degrees out of phase. In the third technique, the gratings were always orthogonal to one another and viewed separately through cutoff filters. This allowed us to exploit the orientation selectivity of cortical cells and thereby stimulate them alternately through each eye without simultaneously affecting activity in the dorsal lateral geniculate nucleus (dLGN). 3. We based our conclusions on a sample of 691 neurons, which we recorded in 21 animals. Results with all techniques were remarkably consistent. Binocular cortical inputs predominated at normal or nearly normal levels, even when a number of seconds elapsed between successive exposures of each eye. 4. An interonset interval of at least 10 s was required to make a substantial reduction in binocularity. This interval can be separated into two parts--the duration of exclusive monocular stimulation and the time when neither channel receives input. Of these, the latter appeared to be less important. Blanking times of 0.15--1.0 s did not affect binocularity if the interonset interval was 1 or 10 s; and in one experiment where the blanking time was 9 s, the resulting disruption in binocularity was less than that found with shorter blanking times and the same interonset interval. 5. Our results imply that mechanisms responsible for the disappearance of binocular cortical inputs require independent stimulation of each eye for periods of at least a few seconds; this stimulation must be of a kind that is known to excite cortical cells. Our results with the rotating grafting show, in addition, that the mechanisms whose timing we have measured are intrinsic to the cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3