Phrenic motoneurons in the cat: subpopulations and nature of respiratory drive potentials

Author:

Berger A. J.

Abstract

1. Intracellular recordings were made from 78 phrenic motoneurons (PM) in anesthetized, paralyzed, artificially ventilated cats that were slightly hypercapnic. 2. Three subpopulations of PM (types A, B, and A/B) were identified on the basis of their membrane potential trajectories during expiration (E). Type A cells exhibited wholly linear trajectories. These were rapidly hyperpolarized at the onset of E followed by a slow ramp of increasing hyperpolarization observed in 51 of 59 type A cells. Types B (13 cells) and A/B (6 cells) had nonlinear trajectories in E. Type B cells approached their end-expiratory potential levels more slowly. 3. Measurements of axonal conduction velocity, expiratory phase input resistance, initial depolarization rate, and initial spike onset during inspiration revealed that type B cells had significantly slower axonal conduction velocities, higher input resistances, greater initial depolarization rates, and earlier initial spike onsets than type A cells. The properties of type A/B were intermediate between the other cell types. These results support the hypothesis that the PM pool is not homogeneous. 4. Active E-phase inhibition of all types of PM was directly demonstrated by reversal of the increasing hyperpolarizing wave to a depolarizing wave with hyperpolarizing current injection using a bridge circuit. Thus hyperpolarization of PM during E is not merely due to a central disfacilitation. 5. During hyperpolarizing current injection the inspiratory phase membrane potential trajectory of all PM became a ramp depolarization similar to that seen during control conditions in type A cells. These results support the conclusion that all cells within the PM pool are receiving a similar central excitatory synaptic input during inspiration. The rapid initial depolarization of type B and their concomitant early spike onset is a consequence in part of a rebound excitation from their expiratory phase inhibition as well as a higher input resistance, probably due to a smaller cell size. 6. Expiratory related neural activity was recorded within the phrenic motor nucleus. It is suggested that these expiratory related neural elements, based on the temporal pattern of their activity, may be responsible for the active inhibition of PM.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3