The tactile speed aftereffect depends on the speed of adapting motion across the skin rather than other spatiotemporal features

Author:

McIntyre Sarah1234ORCID,Seizova-Cajic Tatjana1,Holcombe Alex O.2

Affiliation:

1. Faculty of Health Sciences, University of Sydney, Sydney, Australia;

2. School of Psychology, University of Sydney, Sydney, Australia;

3. Neuroscience Research Australia, Sydney, Australia; and

4. The MARCS Institute for Brain, Behaviour and Development, University of Western Sydney, Sydney, Australia

Abstract

After prolonged exposure to a surface moving across the skin, this felt movement appears slower, a phenomenon known as the tactile speed aftereffect (tSAE). We asked which feature of the adapting motion drives the tSAE: speed, the spacing between texture elements, or the frequency with which they cross the skin. After adapting to a ridged moving surface with one hand, participants compared the speed of test stimuli on adapted and unadapted hands. We used surfaces with different spatial periods (SPs; 3, 6, 12 mm) that produced adapting motion with different combinations of adapting speed (20, 40, 80 mm/s) and temporal frequency (TF; 3.4, 6.7, 13.4 ridges/s). The primary determinant of tSAE magnitude was speed of the adapting motion, not SP or TF. This suggests that adaptation occurs centrally, after speed has been computed from SP and TF, and/or that it reflects a speed cue independent of those features in the first place (e.g., indentation force). In a second experiment, we investigated the properties of the neural code for speed. Speed tuning predicts that adaptation should be greatest for speeds at or near the adapting speed. However, the tSAE was always stronger when the adapting stimulus was faster (242 mm/s) than the test (30–143 mm/s) compared with when the adapting and test speeds were matched. These results give no indication of speed tuning and instead suggest that adaptation occurs at a level where an intensive code dominates. In an intensive code, the faster the stimulus, the more the neurons fire.

Funder

Australian Research Council

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3