Influence of the behavioral goal and environmental obstacles on rapid feedback responses

Author:

Nashed Joseph Y.1,Crevecoeur Frédéric1,Scott Stephen H.123

Affiliation:

1. Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada;

2. Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada; and

3. Department of Medicine, Queen's University, Kingston, Ontario, Canada

Abstract

The motor system must consider a variety of environmental factors when executing voluntary motor actions, such as the shape of the goal or the possible presence of intervening obstacles. It remains unknown whether rapid feedback responses to mechanical perturbations also consider these factors. Our first experiment quantified how feedback corrections were altered by target shape, which was either a circular dot or a bar. Unperturbed movements to each target were qualitatively similar on average but with greater dispersion of end point positions when reaching to the bar. On random trials, multijoint torque perturbations deviated the hand left or right. When reaching to a circular target, perturbations elicited corrective movements that were directed straight to the location of the target. In contrast, corrective movements when reaching to a bar were redirected to other locations along the bar axis. Our second experiment quantified whether the presence of obstacles could interfere with feedback corrections. We found that hand trajectories after the perturbations were altered to avoid obstacles in the environment. Importantly, changes in muscle activity reflecting the different target shapes (bar vs. dot) or the presence of obstacles were observed in as little as 70 ms. Such changes in motor responses were qualitatively consistent with simulations based on optimal feedback control. Taken together, these results highlight that long-latency motor responses consider spatial properties of the goal and environment.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3