Functional Distinction Between Visuomovement and Movement Neurons in Macaque Frontal Eye Field During Saccade Countermanding

Author:

Ray Supriya1,Pouget Pierre1,Schall Jeffrey D.1

Affiliation:

1. Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Department of Psychology, Vanderbilt University, Nashville, Tennessee

Abstract

In the previous studies on the neural control of saccade initiation using the countermanding paradigm, movement and visuomovement neurons in the frontal eye field were grouped as movement-related neurons. The activity of both types of neurons was modulated when a saccade was inhibited in response to a stop signal, and this modulation occurred early enough to contribute to the control of the saccade initiation. We now report a functional difference between these two classes of neurons when saccades are produced. Movement neurons exhibited a progressive accumulation of discharge rate following target presentation that triggered a saccade when it reached a threshold. When saccades were inhibited with lower probability in response to a stop signal appearing at longer delays, this accumulating activity was interrupted at levels progressively closer to the threshold. In contrast, visuomovement neurons exhibited a maintained elevated discharge rate following target presentation that was followed by a further enhancement immediately before the saccade initiation. When saccades were inhibited in response to a stop signal, the late enhancement was absent and the maintained activity decayed regardless of stop-signal delay. These results demonstrate that the activity of movement neurons realizes the progressive commitment to the saccade initiation modeled by the activation of the go unit in computational models of countermanding performance. The lack of correspondence of the activity of visuomovement neurons with any elements of these models indicates that visuomovement neurons perform a function other than the saccade preparation such as a corollary discharge to update visual processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3