Retinal Bipolar Cell Input Mechanisms in Giant Danio. II. Patch-Clamp Analysis of on Bipolar Cells

Author:

Wong Kwoon Y.,Cohen Ethan D.,Dowling John E.

Abstract

Glutamate receptors on giant danio retinal on bipolar cells were studied with whole cell patch clamping using a slice preparation. Cone-driven on bipolars (Cbs) and mixed-input on bipolars (Mbs) were identified morphologically. Most Cbs responded to the excitatory amino acid transporter (EAAT) substrate d-aspartate but not to the group III metabotropic glutamate receptor (mGluR) agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) or the AMPA/kainate receptor agonist kainate, suggesting EAATs are the primary glutamate receptors on Cbs. The EAAT inhibitor dl- threo-β-benzyloxyasparate (TBOA) blocked all light-evoked responses of Cbs, suggesting these responses are mediated exclusively by EAATs. Conversely, all Mbs responded to d-aspartate and l-AP4 but not to kainate, indicating they have both EAATs and group III mGluRs (presumably mGluR6). The light responses of Mbs involve both receptors because they could be blocked by TBOA plus (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG, a group III mGluR antagonist) but not by either alone. Under dark-adapted conditions, the responses of Mbs to green (rod-selective) stimuli were reduced by CPPG but enhanced by TBOA. In contrast, both antagonists reduced the responses to red (cone-selective) stimuli, although TBOA was more effective. Furthermore, under photopic conditions, TBOA failed to eliminate light-evoked responses of Mbs. Thus on Mbs, rod inputs are mediated predominantly by mGluR6, whereas cone inputs are mediated mainly by EAATs but also by mGluR6 to some extent. Finally, we explored the interactions between EAATs and mGluR6 in Mbs. Responses to d-aspartate were reduced by l-AP4 and vice versa. Therefore mGluR6 and EAATs suppress each other, and this might underlie mutual suppression between rod and cone signals in Mbs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3