Dopaminergic Modulation of Local Network Activity in Rat Prefrontal Cortex

Author:

Bandyopadhyay Susanta,Hablitz John J.

Abstract

Dopamine modulates prefrontal cortex excitability in complex ways. Dopamine's net effect on local neuronal networks is therefore difficult to predict based on studies on pharmacologically isolated excitatory or inhibitory connections. In the present work, we have studied the effects of dopamine on evoked activity in acute rat brain slices when both excitation and inhibition are intact. Whole cell recordings from layer II/III pyramidal cells under conditions of normal synaptic transmission showed that bath-applied dopamine (30 μM) increased the outward inhibitory component of composite postsynaptic currents, whereas inward excitatory currents were not significantly affected. Optical imaging with the voltage-sensitive dye N-(3-(triethylammonium)propyl)-4-(4-(p-diethylaminophenyl)buta-dienyl)pyridinium dibromide revealed that bath application of dopamine significantly decreased the amplitude, duration, and lateral spread of activity in local cortical networks. This effect of dopamine was observed both with single and train (5 at 20 Hz) stimuli. The effect was mimicked by the D1-like receptor agonist R(+)-6-chloro-7,8-dihydroxy-1-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1 μM) and was blocked by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (10 μM), a selective antagonist for D1-like receptors. The D2-like receptor agonist quinpirole (10 μM) had no significant effect on evoked dye signals. Our results suggest that dopamine's effect on inhibition dominates over that on excitation under conditions of normal synaptic transmission. Such neuromodulation by dopamine may be important for maintenance of stability in local neuronal networks in the prefrontal cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference75 articles.

1. Dopamine Enhances Spatiotemporal Spread of Activity in Rat Prefrontal Cortex

2. Dopamnine-Immunoreactive axon varicosities form nonrandom contacts with GABA-immunoreactive neurons of rat medial prefrontal cortex

3. Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine

4. Bjorklund A, Lindvall O. Dopamine-containing systmes in the CNS. In: Handbook of Chemical Neuroanatomy: Classical Transmitter in the Rat, edited by Bjorklund A, Hokfelt T. Amsterdam: Elsevier, 1984, p. 55–122.

5. Bjorklund A, Lindvall O. Catecholaminergic regulatory systems. In: Handbook of Physiology. The Nervous System. Intrinsic Regulatory Systems of the Brain. Washington, DC: Am. Physiol. Soc. 1986, sect. 1, vol. IV, p. 155–235.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3