Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error

Author:

Bagce Hamid F.12,Saleh Soha123,Adamovich Sergei V.123,Krakauer John W.4,Tunik Eugene12

Affiliation:

1. Department of Rehabilitation and Movement Science, School of Health Related Professions, University of Medicine and Dentistry of New Jersey, Newark, New Jersey;

2. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, New Jersey;

3. Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey; and

4. Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland

Abstract

We used adaptation to high and low gains in a virtual reality setup of the hand to test competing hypotheses about the excitability changes that accompany motor learning. Excitability was assayed through changes in amplitude of motor evoked potentials (MEPs) in relevant hand muscles elicited with single-pulse transcranial magnetic stimulation (TMS). One hypothesis is that MEPs will either increase or decrease, directly reflecting the effect of low or high gain on motor output. The alternative hypothesis is that MEP changes are not sign dependent but rather serve as a marker of visuomotor learning, independent of performance or visual-to-motor mismatch (i.e., error). Subjects were required to make flexion movements of a virtual forefinger to visual targets. A gain of 1 meant that the excursions of their real finger and virtual finger matched. A gain of 0.25 (“low gain”) indicated a 75% reduction in visual versus real finger displacement, a gain of 1.75 (“high gain”) the opposite. MEP increases (>40%) were noted in the tonically activated task-relevant agonist muscle for both high- and low-gain perturbations after adaptation reached asymptote with kinematics matched to veridical levels. Conversely, only small changes in excitability occurred in a control task of pseudorandom gains that required adjustments to large errors but in which learning could not accumulate. We conclude that changes in corticospinal excitability are related to learning rather than performance or error.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3