Controlling instabilities in manipulation requires specific cortical-striatal-cerebellar networks

Author:

Mosier Kristine1,Lau Chad2,Wang Yang1,Venkadesan Madhusudhan34,Valero-Cuevas Francisco J.35

Affiliation:

1. Department of Radiology, Indiana University School of Medicine, Indianapolis;

2. Wheldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana;

3. National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India;

4. School of Engineering and Applied Sciences and Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts; and

5. Department of Biomedical Engineering and Division of Biokinesiology and Physical Therapy, The University of Southern California, Los Angeles, California

Abstract

Dexterous manipulation requires both strength, the ability to produce fingertip forces of a specific magnitude, and dexterity, the ability to dynamically regulate the magnitude and direction of fingertip force vectors and finger motions. Although cortical activity in fronto-parietal networks has been established for stable grip and pinch forces, the cortical regulation in the dexterous control of unstable objects remains unknown. We used functional magnetic resonance imaging (fMRI) to interrogate cortical networks engaged in the control of four objects with increasing instabilities but requiring constant strength. In addition to expected activity in fronto-parietal networks we find that dexterous manipulation of increasingly unstable objects is associated with a linear increase in the amplitude of the BOLD signal in the basal ganglia ( P = 0.007 and P = 0.023 for 2 compression tasks). A computational regression (connectivity) model identified independent subsets of cortical networks whose connection strengths were mutable and associated with object instability ( P < 0.001). Our results suggest that in the presence of object instability, the basal ganglia may modulate the activity of premotor areas and subsequent motor output. This work, therefore, provides new evidence for the selectable cortical representation and execution of dynamic multifinger manipulation for grasp stability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3