Ryanodine Receptor Regulates Endogenous Cannabinoid Mobilization in the Hippocampus

Author:

Isokawa Masako,Alger Bradley E.

Abstract

Endogenous cannabinoids (eCBs) are produced and mobilized in a cytosolic calcium ([Ca2+]i)–dependent manner, and they regulate excitatory and inhibitory neurotransmitter release by acting as retrograde messengers. An indirect but real-time bioassay for this process on GABAergic transmission is DSI (depolarization-induced suppression of inhibition). The magnitude of DSI correlates linearly with depolarization-induced increase of [Ca2+]ithat is thought to be initiated by Ca2+influx through voltage-gated Ca2+channels. However, the identity of Ca2+sources involved in eCB mobilization in DSI remains undetermined. Here we show that, in CA1 pyramidal cells, DSI-inducing depolarizing voltage steps caused Ca2+-induced Ca2+release (CICR) by activating the ryanodine receptor (RyR) Ca2+-release channel. CICR was reduced, and the remaining increase in [Ca2+]iwas less effective in generating DSI, when the RyR antagonists, ryanodine or ruthenium red, were applied intracellularly, or the Ca2+stores were depleted by the Ca2+-ATPase inhibitors, cyclopiazonic acid or thapsigargin. The CICR-dependent effects were most prominent in cultured or immature acute slices, but were also detectable in slices from adult tissue. Thus we suggest that voltage-gated Ca2+entry raises local [Ca2+]isufficiently to activate nearby RyRs and that the resulting CICR plays a critical role in initiating eCB mobilization. RyR may be a key molecule for the depolarization-induced production of eCBs that inhibit GABA release in the hippocampus.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3