Physiological Correlates of Perceptual Learning in Monkey V1 and V2

Author:

Ghose Geoffrey M.1,Yang Tianming1,Maunsell John H. R.1

Affiliation:

1. Division of Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030

Abstract

Performance in visual discrimination tasks improves with practice. Although the psychophysical parameters of these improvements have suggested the involvement of early areas in visual cortex, there has been little direct study of the physiological correlates of such perceptual learning at the level of individual neurons. To examine how neuronal response properties in the early visual system may change with practice, we trained monkeys for more than 6 mo in an orientation discrimination task in which behaviorally relevant stimuli were restricted to a particular retinal location and oriented around a specific orientation. During training the monkeys' discrimination thresholds gradually improved to much better than those of naive monkeys or humans. Although this improvement was specific to the trained orientation, it showed little retinotopic specificity. The receptive field properties of single neurons from regions representing the trained location and a location in the opposite visual hemifield were measured in V1 and V2. In most respects the receptive field properties in the representations of the trained and untrained regions were indistinguishable. However, in the regions of V1 and V2 representing the trained location, there were slightly fewer neurons whose optimal orientation was near the trained orientation. This resulted in a small but significant decrease in the V1 population response to the trained orientation at the trained location. Consequently, the observed neuronal populations did not exhibit any orientation-specific biases sufficient to explain the orientation specificity of the behavioral improvement. Pooling models suggest that the behavioral improvement was accomplished with a task-dependent and orientation-selective pooling of unaltered signals from early visual neurons. These data suggest that, even for training with stimuli suited to the selectivities found in early areas of visual cortex, behavioral improvements can occur in the absence of pronounced changes in the physiology of those areas.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 261 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3