Number of KCa Channels Underlying Spontaneous Miniature Outward Currents (SMOCs) in Mudpuppy Cardiac Neurons

Author:

Scornik Fabiana S.1,Merriam Laura A.1,Parsons Rodney L.1

Affiliation:

1. Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405

Abstract

Spontaneous miniature outward currents (SMOCs) in parasympathetic neurons from mudpuppy cardiac ganglia are caused by activation of TEA- and iberiotoxin-sensitive, Ca2+-dependent K+(BK) channels. Previously we reported that SMOCs are activated by Ca2+-induced Ca2+ release (CICR) from caffeine- and ryanodine-sensitive intracellular Ca2+ stores. In the present study, we analyzed the single channel currents that contribute to SMOC generation in mudpuppy cardiac neurons. The slope conductance of BK channels, determined from the I-V relationship of single-channel currents recorded with cell-attached patches in physiological K+ concentrations, was 84 pS. The evidence supporting the identity of this channel as the channel involved in SMOC generation was its sensitivity to internal Ca2+, external TEA, and caffeine. In cell-attached patch recordings, 166 μM TEA applied in the pipette reduced single-channel current amplitude by 32%, and bath-applied caffeine increased BK channel activity. The ratio between the averaged SMOC amplitude and the single-channel current amplitude was used to estimate the average number of channels involved in SMOC generation. The estimated number of channels involved in generation of an averaged SMOC ranged from 18 to 23 channels. We also determined that the Po of the BK channels at the peak of a SMOC remains constant at voltages more positive than −20 mV, suggesting that the transient rise in intracellular Ca2+from ryanodine-sensitive intracellular stores in the vicinity of the BK channel reached concentrations most likely exceeding 40 μM.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3