Affiliation:
1. Department of Anatomy and Neurobiology, University of Vermont College of Medicine, Burlington, Vermont 05405
Abstract
Spontaneous miniature outward currents (SMOCs) in parasympathetic neurons from mudpuppy cardiac ganglia are caused by activation of TEA- and iberiotoxin-sensitive, Ca2+-dependent K+(BK) channels. Previously we reported that SMOCs are activated by Ca2+-induced Ca2+ release (CICR) from caffeine- and ryanodine-sensitive intracellular Ca2+ stores. In the present study, we analyzed the single channel currents that contribute to SMOC generation in mudpuppy cardiac neurons. The slope conductance of BK channels, determined from the I-V relationship of single-channel currents recorded with cell-attached patches in physiological K+ concentrations, was 84 pS. The evidence supporting the identity of this channel as the channel involved in SMOC generation was its sensitivity to internal Ca2+, external TEA, and caffeine. In cell-attached patch recordings, 166 μM TEA applied in the pipette reduced single-channel current amplitude by 32%, and bath-applied caffeine increased BK channel activity. The ratio between the averaged SMOC amplitude and the single-channel current amplitude was used to estimate the average number of channels involved in SMOC generation. The estimated number of channels involved in generation of an averaged SMOC ranged from 18 to 23 channels. We also determined that the Po of the BK channels at the peak of a SMOC remains constant at voltages more positive than −20 mV, suggesting that the transient rise in intracellular Ca2+from ryanodine-sensitive intracellular stores in the vicinity of the BK channel reached concentrations most likely exceeding 40 μM.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献