Primate Horizontal Cell Dynamics: An Analysis of Sensitivity Regulation in the Outer Retina

Author:

Smith Vivianne C.1,Pokorny Joel1,Lee Barry B.2,Dacey Dennis M.3

Affiliation:

1. Visual Sciences Center, University of Chicago, Chicago, Illinois 60637;

2. Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany; and

3. Department of Biostructure, University of Washington, Seattle, Washington 98175

Abstract

The human cone visual system maintains sensitivity over a broad range of illumination, from below 1 troland to 1,000,000 trolands. While the cone photoreceptors themselves are an important locus for sensitivity regulation—or light adaptation—the degree to which they contribute in primates remains unclear. To determine the range of sensitivity regulation in the outer retina, the temporal dynamics, neural gain control, and response range compression were measured in second-order neurons, the H1 horizontal cells, of the macaque retina. Situated at the first synapse in the retina, H1 cells receive input from a large population of cones. Lee et al. have previously shown that sensitivity regulation in H1 cells is both cone type-specific and spatially restricted. The sensitivity regulation seen in H1 cells at moderate illuminances thus takes place before the summation of cone signals in these cells, and the data establish the H1 cell as a convenient locus for analyzing cone signals. In the present study, cone-driven responses of primate H1 cells to temporally modulated sine-wave stimuli and to increment pulses were measured at steady levels of 1–1,000 trolands. The H1 cell gave a modulated response to sine-wave stimuli and hyperpolarized to increment pulses with overshoots at stimulus onset and offset. The temporal amplitude sensitivity function was primarily low-pass in shape, with a small degree of low-frequency roll off and a resonance shoulder near 40 Hz. A model incorporating a cascade of first-order filters together with an underdamped second-order filter could describe both temporal sinusoidal and pulse hyperpolarizations. Amplitude sensitivity was estimated from both pulse and sine-wave data as a function of the steady adaptation level. Sensitivity at low light levels (1 troland) showed a slowing in temporal dynamics, indicating time-dependent sensitivity regulation. Sensitivity was reduced at light levels above approximately 10 trolands, reflecting both response range compression and neural gain control. Thus the outer retina is a major locus for sensitivity regulation in primates.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3