Shape Representation in Area V4: Position-Specific Tuning for Boundary Conformation

Author:

Pasupathy Anitha12,Connor Charles E.32

Affiliation:

1. Department of Biomedical Engineering and

2. Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218

3. Department of Neuroscience, Johns Hopkins University School of Medicine; and

Abstract

Visual shape recognition in primates depends on a multi-stage pathway running from primary visual cortex (V1) to inferotemporal cortex (IT). The mechanisms by which local shape signals from V1 are transformed into selectivity for abstract object categories in IT are unknown. One approach to this issue is to investigate shape representation at intermediate stages in the pathway, such as area V4. We studied 109 V4 cells that appeared sensitive to complex shape in preliminary tests. To achieve a more complete picture of shape representation in V4, we tested each cell with a set of 366 stimuli, constructed by systematically combining convex and concave boundary elements into closed shapes. Using this large, diverse stimulus set, we found that all the cells in our sample responded to a wide variety of shapes and did not appear to encode any single type of global shape. However, for most cells the shapes evoking strongest responses were characterized by a consistent type of boundary conformation at a specific position within the stimulus. For example, a given cell might be tuned for shapes containing concave curvature at the right, with other parts of the shape having little or no effect on responses. Many cells were tuned for more complex boundary configurations (e.g., a convex angle adjacent to a concave curve). We quantified this kind of shape tuning with Gaussian functions on a curvature × position domain. These tuning functions fit the neural responses much better than tuning functions based on edge or axis orientation. Thus individual V4 cells appear to encode moderately complex boundary information at specific locations within larger shapes. This finding suggests that, at intermediate stages in the V1-IT transformation, complex objects are represented at least partly in terms of the configurations and positions of their contour components.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 391 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3