Neural Representations of Temporally Asymmetric Stimuli in the Auditory Cortex of Awake Primates

Author:

Lu Thomas1,Liang Li1,Wang Xiaoqin1

Affiliation:

1. Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

Abstract

The representation of rapid acoustic transients by the auditory cortex is a fundamental issue that is still unresolved. Auditory cortical neurons have been shown to be limited in their stimulus-synchronized responses, yet the perceptual performances of humans and animals in discriminating temporal variations in complex sounds are better than what existing neurophysiological data would predict. This study investigated the neural representation of temporally asymmetric stimuli in the primary auditory cortex of awake marmoset monkeys. The stimuli, ramped and damped sinusoids, were systematically manipulated (by means of half-life of the exponential envelope) within a cortical neuron's presumed temporal integration window. The main findings of this study are as follows: 1) temporal asymmetry in ramped and damped sinusoids with a short period (25 ms) was clearly reflected by average discharge rate but not necessarily by temporal discharge patterns of auditory cortical neurons. There was considerable response specificity to these stimuli such that some neurons were strongly responsive to a ramped sinusoid but almost completely unresponsive to its damped counterpart or vice versa. Of 181 neurons studied, 140 (77%) showed significant response asymmetry in at least one of the tested half-life values of the exponential envelope. Forty-six neurons showed significant response asymmetry over all half-lives tested. Sustained firing, commonly observed under awake conditions, contributed to greater response asymmetry than that of onset responses in many neurons. 2) A greater proportion of the neurons (32/46) that exhibited significant overall response asymmetry showed stronger responses to the ramped sinusoids than to the damped sinusoids, possibly contributing to the difference in the perceived loudness between these two classes of sounds. 3) The asymmetry preference of a neuron to ramped or damped sinusoids did not appear to be correlated with its characteristic frequency or minimum response latency, suggesting that this is a general phenomenon that exists across populations of cortical neurons. Moreover, the intensity of the stimuli did not have significant effects on the measure of the asymmetry preference based on discharge rate. 4) A population measure of response preference, based on discharge rate, of cortical neurons to the temporally asymmetric stimuli was qualitatively similar to the performance of human listeners in discriminating ramped versus damped sinusoids at different half-life values. These findings suggest that rapid acoustic transients embedded in complex sounds can be represented by discharge rates of cortical neurons instead of or in the absence of stimulus-synchronized discharges.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3