The Role of Sensory Signals From the Insect Coxa-Trochanteral Joint in Controlling Motor Activity of the Femur-Tibia Joint

Author:

Akay Turgay1,Bässler Ulrich2,Gerharz Petra3,Büschges Ansgar1

Affiliation:

1. Zoologisches Institut, Universität zu Köln, 50923 Cologne;

2. Chamissostrasse 16, 70193 Stuttgart, Germany

3. Fachbereich Biologie, Universität Kaiserslautern, 67653 Kaiserslautern; and

Abstract

Interjoint coordination in multi-jointed limbs is essential for the generation of functional locomotor patterns. Here we have focused on the role that sensory signals from the coxa-trochanteral (CT) joint play in patterning motoneuronal activity of the femur-tibia (FT) joint in the stick insect middle leg. This question is of interest because when the locomotor system is active, movement signals from the FT joint are known to contribute to patterning of activity of the central rhythm-generating networks governing the CT joint. We investigated the influence of femoral levation and depression on the activity of tibial motoneurons. When the locomotor system was active, levation of the femur often induced a decrease or inactivation of tibial extensor activity while flexor motoneurons were activated. Depression of the femur had no systematic influence on tibial motoneurons. Ablation experiments revealed that this interjoint influence was not mediated by signals from movement and/or position sensitive receptors at the CT joint, i.e., trochanteral hairplate, rhombal hairplate, or internal levator receptor organ. Instead the influence was initiated by sensory signals from a field of campaniform sensillae, situated on the proximal femur (fCS). Selective stimulation of these fCS produced barrages of inhibitory postsynaptic potentials (IPSPs) in tibial extensor motoneurons and activated tibial flexor motoneurons. During pharmacologically activated rhythmic activity of the otherwise isolated mesothoracic ganglion (pilocarpine, 5 × 10 4 M), deafferented except for the CT joint, levation of the femur as well had an inhibitory influence on tibial extensor motoneurons. However, the influence of femoral levation on the rhythm generated was rather labile and only sometimes a reset of the rhythm was induced. In none of the preparations could entrainment of rhythmicity by femoral movement be achieved, suggesting that sensory signals from the CT joint only weakly affect central rhythm-generating networks of the FT joint. Finally, we analyzed the role of sensory signals from the fCS during walking by recording motoneuronal activity in the single middle leg preparation with fCS intact and after their removal. These experiments showed that fCS activity plays an important role in generating tibial motoneuron activity during the stance phase of walking.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3