Hypoglycemia Enhances Ionotropic But Reduces Metabotropic Glutamate Responses in Substantia Nigra Dopaminergic Neurons

Author:

Marinelli Silvia1,Federici Mauro1,Giacomini Patrizia2,Bernardi Giorgio13,Mercuri Nicola B.13

Affiliation:

1. Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico;

2. Clinica Neurologica, Universita' di Roma “La Sapienza,” 00179 Rome, Italy

3. Clinica Neurologica, Universita' di Roma “Tor Vergata”; and

Abstract

It is widely accepted that energy deprivation causes a neuronal death that is mainly determined by an increase in the extracellular level of glutamate. Consequently an excessive membrane depolarization and a rise in the intracellular concentration of sodium and calcium are produced. In spite of this scenario, the function of excitatory and inhibitory amino acids during an episode of energy failure has not been studied yet at a cellular level. In a model of cerebral hypoglycemia in the rat substantia nigra pars compacta, we measured neuronal responses to excitatory amino acid agonists. Under single-electrode voltage-clamp mode at −60 mV, the application of the ionotropic glutamate receptor agonists N-methyl-d-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and the metabotropic group I agonist (S)-3,5-dihydroxyphenilglycine (DHPG) produced reversible inward currents in the dopaminergic cells. In addition, an outward current was caused by the superfusion of the metabotropic GABAB agonist baclofen. Glucose deprivation enhanced the inward responses caused by each ionotropic glutamate agonist. In contrast, hypoglycemia depressed the DHPG-induced inward current and the baclofen-induced outward current. These effects of hypoglycemia were reversible. To test whether a failure of the Na+/K+ ATPase pump could account for the modification of the agonist-induced currents during hypoglycemia, we treated the midbrain slices with strophanthidin (1–3 μM). Strophanthidin enhanced the inward currents caused by glutamate agonists. However, it did not modify the GABAB-induced outward current. Our data suggest that glucose deprivation enhances the inward current caused by the stimulation of ionotropic glutamate receptors while it dampens the responses caused by the activation of metabotropic receptors. Thus a substantial component of the augmented neuronal response to glutamate, during energy deprivation, is very likely due to the failure of Na+ and Ca2+ extrusion and might ultimately favor excitotoxic processes in the dopaminergic cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3