Pattern Generation for Walking and Searching Movements of a Stick Insect Leg. I. Coordination of Motor Activity

Author:

Fischer Hanno1,Schmidt Joachim1,Haas Roman1,Büschges Ansgar1

Affiliation:

1. Zoologisches Institut, Universität zu Köln, 50923 Cologne, Germany

Abstract

During walking, the six legs of a stick insect can be coordinated in different temporal sequences or gaits. Leg coordination in each gait is controlled and stabilized by coordinating mechanisms that affect the action of the segmental neuronal networks for walking pattern generation. At present, the motor program for single walking legs in the absence of movement-related coordinating intersegmental influences from the other legs is not known. This knowledge is a prerequisite for the investigation of the segmental neuronal mechanisms that control the movements of a leg and to study the effects of intersegmental coordinating input. A stick insect single middle leg walking preparation has been established that is able to actively perform walking movements on a treadband. The walking pattern showed a clear division into stance and swing phases and, in the absence of ground contact, the leg performed searching movements. We describe the activity patterns of the leg muscles and motoneurons supplying the coxa-trochanteral joint, the femur-tibial joint, and the tarsal leg joints of the middle leg during both walking and searching movements. Furthermore we describe the temporal coordination between them. During walking movements, the coupling between the leg joints was phase-constant; in contrast during searching movements, the coupling between the leg joints was dependent on cycle period. The motor pattern of the single leg generated during walking exhibits similarities with the motor pattern generated during a tripod gait in an intact animal. The generation of walking movements also drives the activity of thoraco-coxal motoneurons of the deafferented and de-efferented thoraco-coxal leg joint in a phase-locked manner, with protractor motoneurons being active during swing and retractor motoneurons being active during stance. These results show that for the single middle leg, a basic walking motor pattern is generated sharing similarities with the tripod gait and that the influence of the motor pattern generated in the distal leg joints is sufficient for driving the activity of coxal motoneurons so an overall motor pattern resembling forward walking is generated.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3