Affiliation:
1. Department of Pharmacology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and
2. Department of Physiology, School of Medicine, Akita University, Akita 010-8543, Japan
Abstract
Excitatory postsynaptic currents (EPSCs) in parasympathetic preganglionic neurons (PGNs) were examined using the whole cell patch-clamp recording technique in L6 and S1 spinal cord slices from neonatal rats (6–16 days old). PGNs were identified by labeling with retrograde axonal transport of a fluorescent dye (Fast Blue) injected into the intraperitoneal space 3–7 days before the experiment. Synaptic responses were evoked in PGNs by field stimulation of the lateral funiculus (LF) in the presence of bicuculline methiodide (10 μM) and strychnine (1 μM). In approximately 40% of the cells (total, 100), single-shock electrical stimulation of the LF elicited short, relatively constant latency [3.0 ± 0.1 (SE) ms] fast EPSCs consistent with a monosynaptic pathway. The remainder of the cells did not respond to stimulation. At low intensities of stimulation, the EPSCs often occurred in an all-or-none manner, indicating that they were mediated by a single axonal input. Most cells ( n = 33) exhibited only fast EPSCs (type 1), but some cells ( n = 8) had fast EPSCs with longer, more variable latency polysynaptic EPSCs superimposed on a slow inward current (type 2). Type 1 fast synaptic EPSCs were pharmacologically dissected into two components: a transient component that was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 μM), a non-NMDA glutamatergic antagonist, and a slow decaying component that was blocked by 2-amino-5-phosphonovalerate (APV, 50 μM), a NMDA antagonist. Type 2 polysynaptic currents were reduced by 5 μM CNQX and completely blocked by combined application of 5 μM CNQX and 50 μM APV. The fast monosynaptic component of type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of 5.0 ± 5.9 mV ( n = 5), whereas the slow component exhibited a negative slope conductance at holding potentials greater than −20 mV. The type 1, fast synaptic EPSCs had a time to peak of 1.4 ± 0.1 ms and exhibited a biexponential decay (time constants, 5.7 ± 0.6 and 38.8 ± 4.0 ms). In the majority of PGNs ( n = 11 of 15 cells), EPSCs evoked by electrical stimulation of LF exhibited paired-pulse inhibition (range; 25–33% depression) at interstimulus intervals ranging from 50 to 120 ms. These results indicate that PGNs receive monosynaptic and polysynaptic glutamatergic excitatory inputs from axons in the lateral funiculus.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献