Damping Actions of the Neuromuscular System With Inertial Loads: Human Flexor Pollicis Longus Muscle

Author:

Lin David C.12,Rymer W. Zev12

Affiliation:

1. Department of Biomedical Engineering, Northwestern University; and

2. The Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois 60611

Abstract

Our previous work in an animal model showed that neuromuscular damping properties help maintain limb posture by effectively dissipating mechanical energy arising from disturbances. The purpose of this study was to determine whether similar damping properties were expressed in intact, normal human muscles. To review briefly, when the reflexively active soleus muscle in a decerebrate cat is coupled to an inertial load, application of a force impulse to the load results in lightly damped oscillations. By calculating the logarithmic decrement in muscle velocity following the impulse (the decrement being related to the amount of energy dissipated from the inertia), we found that damping increased with oscillation amplitude, a nonlinear property. This nonlinearity represents an automatic compensation for larger perturbations. Our findings in parallel experiments on the interphalangeal joint of the human thumb were that the long thumb flexor, the flexor pollicis longus (FPL), displayed mechanical and reflex behavior closely comparable to that reported earlier for the cat soleus, despite differences in architectural and metabolic properties between these muscles. Specifically, by selecting experimental trials that did not include voluntary interventions, we observed amplitude-dependent differences in damping in which larger amplitude movements elicited larger damping than did smaller movements. In addition, even after accounting for amplitude-dependent differences in damping, damping was found to be larger in later cycles than in the first cycle. This nonlinearity indicates that both mechanical properties of muscle and reflex mechanisms are dependent on prior movement history. We propose that this history-dependent behavior arises from the effects of prior movement on stretch reflex gain, and these effects are mediated primarily via changes in muscle spindle properties. Recordings of electromyographic activity from the FPL, during the first and second cycles of oscillation supported this postulate of a reduced reflex gain following prior motion. The functional significance of these nonlinear damping properties is that during the initial muscle stretch, the stiffness is high, which helps to preserve the initial position (although at the expense of promoting oscillation). Subsequently, the ensuing increase in damping helps suppress continuing oscillation. This sequence of varying mechanical properties is broadly analogous to the features of a predictive, or feed-forward controller, designed to produce a response that initially maintains position, and subsequently dampens oscillations. These results show that the intrinsic properties of muscle and spinal reflexes automatically provide a complex time-varying response, appropriate for maintenance of stable limb posture.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3