KT3.2 and KT3.3, Two Novel Human Two-Pore K+ Channels Closely Related to TASK-1

Author:

Vega-Saenz de Miera Eleazar1,Lau David H. P.1,Zhadina Maria1,Pountney David2,Coetzee William A.12,Rudy Bernardo13

Affiliation:

1. Department of Physiology and Neuroscience,

2. Department of Pediatric Cardiology, and

3. Department of Biochemistry, New York University School of Medicine, New York, New York 10016

Abstract

We report the cloning of human KT3.2 and KT3.3 new members of the two-pore K+ channel (KT) family. Based on amino acid sequence and phylogenetic analysis, KT3.2, KT3.3, and TASK-1 constitute a subfamily within the KT channel mammalian family. When Xenopus oocytes were injected with KT3.2 cRNA, the resting membrane potential was brought close to the potassium equilibrium potential. At low extracellular K+concentrations, two-electrode voltage-clamp recordings revealed the expression of predominantly outward currents. With high extracellular K+ (98 mM), the current-voltage relationship exhibited weak outward rectification. Measurement of reversal potentials at different [K+]o revealed a slope of 48 mV per 10-fold change in K+ concentration as expected for a K+-selective channel. Unlike TASK-1, which is highly sensitive to changes of pH in the physiological range, KT3.2 currents were relatively insensitive to changes in intracellular or extracellular pH within this range due to a shift in the pH dependency of KT3.2 of 1 pH unit in the acidic direction. On the other hand, the phorbol ester phorbol 12-myristate 13-acetate (PMA), which does not affect TASK-1, produces strong inhibition of KT3.2 currents. Human KT3.2 mRNA expression was most prevalent in the cerebellum. In rat, KT3.2 is exclusively expressed in the brain, but it has a wide distribution within this organ. High levels of expression were found in the cerebellum, medulla, and thalamic nuclei. The hippocampus has a nonhomogeneous distribution, expressing at highest levels in the lateral posterior and inferior portions. Medium expression levels were found in neocortex. The KT3.2 gene is located at chromosome 8q24 1–3, and the KT3.3 gene maps to chromosome 20q13.1.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3