Formal and Attribute-Specific Information in Primary Visual Cortex

Author:

Reich Daniel S.12,Mechler Ferenc2,Victor Jonathan D.2

Affiliation:

1. Laboratory of Biophysics, The Rockefeller University; and

2. Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021

Abstract

We estimate the rates at which neurons in the primary visual cortex (V1) of anesthetized macaque monkeys transmit stimulus-related information in response to three types of visual stimulus. The stimuli—randomly modulated checkerboard patterns, stationary sinusoidal gratings, and drifting sinusoidal gratings—have very different spatiotemporal structures. We obtain the overall rate of information transmission, which we call formal information, by a direct method. We find the highest information rates in the responses of simple cells to drifting gratings (median: 10.3 bits/s, 0.92 bits/spike); responses to randomly modulated stimuli and stationary gratings transmit information at significantly lower rates. In general, simple cells transmit information at higher rates, and over a larger range, than do complex cells. Thus in the responses of V1 neurons, stimuli that are rapidly modulated do not necessarily evoke higher information rates, as might be the case with motion-sensitive neurons in area MT. By an extension of the direct method, we parse the formal information into attribute-specific components, which provide estimates of the information transmitted about contrast and spatiotemporal pattern. We find that contrast-specific information rates vary across neurons—about 0.3 to 2.1 bits/s or 0.05 to 0.22 bits/spike—but depend little on stimulus type. Spatiotemporal pattern-specific information rates, however, depend strongly on the type of stimulus and neuron (simple or complex). The remaining information rate, typically between 10 and 32% of the formal information rate for each neuron, cannot be unambiguously assigned to either contrast or spatiotemporal pattern. This indicates that some information concerning these two stimulus attributes is confounded in the responses of single neurons in V1. A model that considers a simple cell to consist of a linear spatiotemporal filter followed by a static rectifier predicts higher information rates than are found in real neurons and completely fails to replicate the performance of real cells in generating the confounded information.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3