Lateral Turns in the Lamprey. II. Activity of Reticulospinal Neurons During the Generation of Fictive Turns

Author:

Fagerstedt Patriq1,Orlovsky Grigori N.1,Deliagina Tatiana G.1,Grillner Sten1,Ullén Fredrik1

Affiliation:

1. Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden

Abstract

We studied the neural correlates of turning movements during fictive locomotion in a lamprey in vitro brain–spinal cord preparation. Electrical stimulation of the skin on one side of the head was used to evoke fictive turns. Intracellular recordings were performed from reticulospinal cells in the middle (MRRN) and posterior (PRRN) rhombencephalic reticular nuclei, and from Mauthner cells, to characterize the pattern of activity in these cell groups, and their possible functional role for the generation of turns. All recorded reticulospinal neurons modified their activity during turns. Many cells in both the rostral and the caudal MRRN, and Mauthner cells, were strongly excited during turning. The level of activity of cells in rostral PRRN was lower, while the lowest degree of activation was found in cells in caudal PRRN, suggesting that MRRN may play a more important role for the generation of turning behavior. The sign of the response (i.e., excitation or inhibition) to skin stimulation of a neuron during turns toward (ipsilateral), or away from (contralateral) the side of the cell body was always the same. The cells could thus be divided into four types: 1) cells that were excited during ipsilateral turns and inhibited during contralateral turns; these cells provide an asymmetric excitatory bias to spinal networks and presumably play an important role for the generation of turns; these cells were common ( n = 35; 52%) in both MRRN and PRRN; 2) cells that were excited during turns in either direction; these cells were common ( n = 19; 28%), in particular in MRRN; they could be involved in a general activation of the locomotor system after skin stimulation; some of the cells were also more activated during turns in one direction and could contribute to an asymmetric turn command; 3) one cell that was inhibited during ipsilateral turns and excited during contralateral turns; and 4) cells ( n = 12; 18%) that were inhibited during turns in either direction. In summary, our results show that, in the lamprey, the large majority of reticulospinal cells have responses during lateral turns that are indicative of a causal role for these cells in turn generation. This also suggests a considerable overlap between the command system for lateral turns evoked by skin stimulation, which was studied here, and other reticulospinal command systems, e.g., for lateral turns evoked by other types of stimuli, initiation of locomotion, and turns in the vertical planes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3