Motion Information Is Spatially Localized in a Visual Working-Memory Task

Author:

Zaksas Daniel1,Bisley James W.1,Pasternak Tatiana1

Affiliation:

1. Department of Neurobiology and Anatomy and Center for Visual Science, University of Rochester, Rochester, New York 14642

Abstract

We asked if the information about stimulus motion used in a visual working-memory task is localized in space. Monkeys compared the directions of two moving random-dot stimuli, sample and test, separated by a temporal delay and reported whether the stimuli moved in the same or in different directions. By presenting the two comparison stimuli in separate locations in the visual field, we determined whether information about stimulus direction was spatially localized during the storage and retrieval/comparison components of the task. Two psychophysical measures of direction discrimination provided nearly identical estimates of the critical spatial separation between sample and test stimuli that lead to a loss in threshold. Direction range thresholds measured with dot stimuli consisting of a range of local directional vectors were affected by spatial separation when a random-motion mask was introduced during the delay into the location of the upcoming test. The selective masking at the test location suggests that the information about the remembered direction was localized and available at that location. Direction difference thresholds, measured with coherently moving random dots, were also affected by separation between the two comparison stimuli. The separation at which performance was affected in both tasks increased with retinal eccentricity in parallel with the increase in receptive-field size in neurons in cortical area MT. The loss with transfer of visual information between different spatial locations suggests a contribution of cortical areas with localized receptive fields to the performance of the memory task. The similarity in the spatial scale of the storage mechanism derived psychophysically and the receptive field size of neurons in area MT suggest that MT neurons are central to this task.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3